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Abstract

We introduce a method for assessing the robustness of community detection and apply it to

a world input-output network (WION) to obtain economically plausible results. This method

enabled us to rank communities in the WION in terms of their robustness and stability. The

algorithmic assignment variability index proposed in this study is shown to have predictive

power in terms of forthcoming community rearrangement. We also provide several new

approaches for identifying key economic communities. These approaches are based on the

application of several centrality measures to a synthetic network in which nodes represent

WION communities. Using these methods, we show that in 2000–2014, United States and

Japan-centered communities demonstrated decreasing trends, while the importance of the

China-centered community predominantly increased. A notable feature of the Germany-

centered community rank evolution is that its influence grew only as a result of the inclusion

of the Netherlands and Belgium in 2013.

Introduction

In recent years, the global economy has been increasingly analyzed as an economic network.

This became possible after the publication of multi-country input-output tables, such as the

world input-output database (WIOD) [1], which generalized Leontieff input-output tables [2]

to a multi-country case and included data on bilateral cross-country trade in intermediate

inputs and final goods. Multi-country input-output tables have been used to analyze trade in

terms of the value added ([3–6]), global value chains (GVCs) ([7–11]), role of individual coun-

tries in GVCs ([12, 13]), and other topics.

WIOD data on trade in intermediate inputs can be presented in the form of an adjacency

matrix as a world input-output network (WION). In such a network, the nodes correspond to

sectors of different countries, the edges reflect the direction of trade, and their weights are pro-

portional to trade values. The properties of WIONs have also been extensively studied. Some

authors have focused on the GVC dimension using topological metrics [14, 15], competitive

advantages of individual countries using graph theory [16], and structural changes using the

centrality vector measure [17]. Other authors have focused on the search for key sectors in
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global production networks by using the betweenness centrality measure [18] and the

weighted degree centrality measure [19]. Some used communicability distances to measure the

interactions among countries [20].

The objective of this study is to develop a new method for the identification of robust eco-

nomic communities. At the global level, such communities could be considered as new eco-

nomic agents, along with countries and firms, on the grounds that they create value added as

integrated units. Several papers have studied trade networks with the aim of detecting commu-

nities in value-added creation [14, 15, 21–23]. For example, in [14], the authors studied the

community structure of GVC networks in 1995, 2003, and 2011 using the Newman and Gir-

van algorithm [24]. They showed that the community structure was effectively country-cen-

tered, and trade intensity was mainly determined by geographical proximity. The only evident

globalization trend appears in Europe around the German economy. In [15], the authors intro-

duced a new synthetic network in which nodes represented communities, and the trade flows

among their members were aggregated into links. A similar idea was proposed in [21], where

nodes represented countries and the links reflected cross-country flows. The substantive differ-

ence between such a synthetic network derived from WION and the world trade network

(WTN), where nodes represent countries and edges are import/export flows, is the existence of

self-loops, which are important for the detection of the central nodes.

Community partition algorithms are often based on the maximization of an objective

function, such as modularity. However, in many real-world networks, there may exist

many partitions with a relatively high objective function value (see [25] and references

therein). As noted in [25], such partitions are meaningful and generally not inferior to those

that maximize an objective function value. In addition, in the community detection process,

certain combinations of nodes may remain together, even when they migrate among commu-

nities. Therefore, such node combinations can be considered as building blocks for commu-

nity partition.

The relative importance of WION communities has also been assessed based on centrality

measures, either for WION as a whole or its aggregated synthetic versions. For example, some

authors studied centrality vectors for the GVC network ([14, 15, 17–19, 21, 26]), where nodes

correspond to countries, and ranked their country-sector pairs. Other studies calculated node

centralities in more aggregated networks, where nodes corresponded to countries, and edges

represented exports, imports, or intra-country trade flows (self-loops). While both approaches

are possible, they provide different perspectives on the network structure of trade. While the

former helps identify dominant global players, the latter provides a more general view of the

distribution of economic powers.

This paper contributes to the literature along several dimensions. This paper:

• Proposes several improvements to the community detection algorithm in application to

WION, which allows for economically plausible results to be obtained. In particular, the

study shows that countries play the role of basic building blocks in economic communities,

similar to [25].

• Applies two measures of community detection robustness (with respect to the algorithm

internal randomization and edges’ weights perturbation) and shows that the one corre-

sponding to the algorithm internal randomization may have predictive power in terms of

forthcoming community rearrangement. The robustness of community detection in a num-

ber of complex networks using different indicators was addressed in [27–32]. However, to

the best of our knowledge, this is the first application of these two measures in the quantita-

tive analysis of robustness of community detection in economic networks.
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• Analyses centrality measures for aggregated synthetic networks, where nodes correspond to

communities, rather than countries.

Data and methods

This study is based on the 2016 release of the WIOD [1]. It includes data for 2000–2014 on 56

sectors in 43 advanced countries and emerging economies, and an estimate for the rest of the

world.

The input-output tables for each year have identical structures, as shown in Fig 1.

Structurally, the table includes a matrix of trade in intermediate inputs between country-

sector pairs A, a matrix of final demand (use) by sector F, as well as a gross output vector x and

a value-added vector v.

The matrix elements aij in A correspond to the flows of intermediate inputs produced by

country i and are used in country sector j. Therefore, row i shows sector i’s sales of intermedi-

ate inputs, and column j in the matrix represents country-sector j’s intermediate demand for

these inputs. The elements of matrix F correspond to the final demand for goods produced by

Fig 1. Structure of WIOD tables.

https://doi.org/10.1371/journal.pone.0264623.g001
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a country sector and their use in different countries. Vector x is the gross output of a country

sector, which, by construction, is equal to the sum of all elements of A and F in the corre-

sponding row. The elements of vector v are the value added of country-sectors for columns of

A.

From this input-output table, we construct the adjacency matrix W for the WION.

W ¼
A F

0 0

 !

: ð1Þ

In contrast to previous studies [14], our W includes matrix F (final demand). Accurate com-

munity assignment is required, particularly for small country-sector nodes. Matrix A can be

viewed as an adjacency matrix of the WION subgraph, where nodes represent country-sector

pairs and edges, the flows of intermediate inputs. In turn, matrix F is a WION subgraph adja-

cency matrix with a bipartite structure. It links country-sector supply pairs to final demand

nodes with one aggregate sector per country. The structure of this network is illustrated in the

left panel of Fig 2 [14] for the case of a two-sector and two-country world economy.

In these networks, Gt ¼ ðN t; E t;WtÞ; t ¼ 2000; . . . ; 2014, N t and E t are the sets of nodes

and edges, respectively, and Wt are the matrices of the edge weights. The nodes represent

country-sector supply pairs or country demand pairs, the edges show the direction of product

flows, and their weights wt
ij are the values of products, where node i is sold to node j. The final

demand nodes have only incoming links. In the preprocessing stage, the sectors with zero

inputs and outputs are excluded, as they create redundant isolated nodes in the community

search algorithm (see Fig 8 in [14]).

As every edge in the WION carries information on two opposite flows (the product and

financial ones) to quantify the intensity of the connection between two county-sector nodes,

the network weight matrix W is symmetrized by summing up the weights in the opposite

directions (right panel, Fig 2). To detect communities in this symmetrized network, we use the

modularity-maximizing Louvain algorithm [33].

An important feature of the Louvain algorithm is the use of heuristics in modularity optimi-

zation. The result depends on the assumption of the initial community partition and the choice

of the node sequence used in an algorithm call (for technical details, see [33]). The community

partitions corresponding to the highest modularities can thus vary from call to call. To the best

of our knowledge, such partition variability for real-world networks is quite common [25], but

Fig 2. A two-sector two-country world economy network [14]. Node Sij (i, j = 1, 2) is country j sector i; Fj (j = 1, 2) is country’s j final demand, and vij
(i, j = 1, 2) is the value-added of country j sector i.

https://doi.org/10.1371/journal.pone.0264623.g002
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its effects on community detection in economic networks have not yet been studied. This fact

should be considered when assessing the quality of community assignments.

To address the first issue, we identified the appropriate assumption of the initial community

partition. For this, three common assumptions were considered:

• a trivial partition, where each community contains only one node;

• a country-based partition, where all sectors of a country belong to the same community;

• a previous year partition, where the current year partition is equivalent to the previous year

partition (for each year except for 2000).

The assumption of the initial partition can lead to significantly different community assign-

ments. In the first case, the resulting community structure varied significantly from year to

year. In the second case, the resulting communities were slightly different from the first case,

but with lower inter-year variability. Finally, in the third case, the community structure

remained broadly unchanged from year to year.

To address the second issue of dependence on the node sequence used in an algorithm call,

the following method was used. We ran a sequence of algorithm calls for each assumption in

the initial configuration. The call with the highest modularity value would indicate the best

assumption of the community partition for a given year. Specifically, we ran 90 algorithm calls

for each year from to 2000–14 under different assumptions on the initial community partition.

For 2000, we ran 45 calls under the assumption of a trivial initial partition and 45 calls under

the assumption of a country-based partition. For 2001–14, we ran 30 calls under each of the

three assumptions. From the ranges of the resulting modularity values (S1 Table), we chose the

partition with the highest modularity value as the main partition. This indicates the best

assumption on the initial partition for a given year. For example, for 2003, this was a trivial

partition; for 2008, this was the country-based partition; and 2010, this was the previous year’s

partition (see S2 Table for a complete list of selected initial partitions).

Results and discussion

Community stricture of the global economy

After selecting the initial partitions, we ran the Louvain algorithm and found 26 communities

of nodes representing country-sector pairs in the WION. These communities have several

important features.

First, most sectors of one country belong to the same community; therefore, they are not

divided among different communities in sizeable proportions (in terms of numbers of sectors

or shares of value added). This outcome is predictable, as the economic links between sectors

in a specific country are usually sufficiently tight to pull them into the same community. Using

the terminology of [25], in our network, countries may be described as the “building blocks”—

the sets of nodes appearing together in different communities with high modularity. The only

country that is close to being an exception is Luxembourg. In particular, in 2003, 42 out of 54

sectors belonged to one community, while the 12 remaining sectors were distributed among

other communities. In 2008, 40 sectors belonged to one community and 14 to other ones; in

2011, there were 37 sectors in one community and 14 in others. However, in all these cases at

least 85% of the value added was concentrated in a “leading” community.

Second, sometimes the countries are so strongly economically connected that the tightness

of inter-country links becomes comparable to intra-country links. Therefore, several countries

may constitute a single community. However, as noted in [14], most communities are single-

country communities. By contrast, it is common for some sectors of one country to fall into a
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community formed predominantly by sectors of a different country. These are usually export-

or import-dependent sectors.

Summarizing these two findings, the resulting typical community can be described as con-

taining all or almost all sectors of one or several counties and sometimes a few sectors of other

countries. For example, in 2000, one such community included all sectors of Ireland and all

sectors of Great Britain except for “Water Transport” as well as “Mining and quarrying” of

Norway and “Manufacture of other transport equipment” of Luxembourg.

Third, in all identified communities, the largest contributor to value added has remained

unchanged, even if the membership of communities has changed. Therefore, a community is

labeled after a country makes the highest contribution to its value added. Throughout the

paper, we will use the three-letter ISO code of the corresponding country as the name of the

community (see S3 Table). For instance, in the above-described example of a typical commu-

nity, the label is GBR. In general, one can consider the evolution of a community with a fixed

label but different memberships over the years. Discussing this dynamic, we will, for the most

part, neglect the transitions of separate sectors from one community to another and analyze

the situation when (almost) all sectors of a given country move from one community to

another (more detailed data are available upon request).

Fourth, countries may change their community memberships. This happens when most or

all of their sectors shift from one community to another. The structure of the BRA (the only

case) did not change over 2000—14; the composition of 14 communities (USA, FRA, JPN,

ITA, CAN, MEX, ESP, CHN, KOR, TWN, AUS, IND, IDN, ROW) varied only in several

country-industry pairs from year to year. All these communities, except for ESP, are single-

country communities, while the ESP consists of two countries, Spain and Portugal. The

remaining 11 communities (DEU, NLD, HRV, POL, GBR, SWE, RUS, CHE, GRC, TUR, and

ROU) were more dynamic.

Fig 3 shows the annual assignment of the majority of sectors of a given country to a particu-

lar community. A complete information on the annual country-sector assignments is available

upon request. Arrows in some cells of the table in Fig 3 indicate transitions of a country from

one community to another. The memberships of the identified communities for 2000, 2007,

and 2014 is also provided in S4 Table.

A closer look at the temporal evolution of WION communities leads to several conclusions.

First, some communities can be considered transitional, as they ultimately join other com-

munities. For example, the NLD community in 2000–10 included Belgium, the Netherlands,

and Luxembourg. Later, in 2011, Luxembourg left the community. In 2013, this community

disappeared, as Belgium and the Netherlands joined the DEU community. The POL commu-

nity first appeared in 2003 when Poland, the Czech Republic, and Slovakia separated from the

RUS community. The POL community disappeared in 2010 when all members joined the

DEU community. In 2000–2010, the HRV community consisted of Croatia and Slovenia. In

2011, Slovenia joined the DEU community. Croatia followed in 2012. In 2013, a separate com-

munity consisting of Croatia alone emerged, but in 2014, Croatia rejoined the DEU commu-

nity. All these transitions point to the long-term trend toward building a Germany-centered

economic community ([14]).

Second, a gradual disintegration of the Russian economic community was observed. In

2000, the RUS community included Slovakia, Lithuania, Russia, the Czech Republic, Poland,

and Latvia. In 2003, Slovakia, the Czech Republic, and Poland left the community. In 2008,

Lithuania and Latvia joined the POL community. In 2009, both countries temporarily

returned to the RUS community and joined the SWE community, consisting of Denmark,

Sweden, Finland, Estonia, and Norway.
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Third, the community assignments of some countries are highly unstable, particularly in

smaller countries. For example, Turkey, Romania, Bulgaria, Cyprus, and Greece have often

changed their communities between TUR, GRC, and ROU, with the latter two communities

occasionally appearing and disappearing. This makes the TUR, GRC, and ROU communities

dynamically unstable. In addition, Malta left the TUR community in 2008 but has been

assigned to the GBR community since then.

Fig 3. Assignment of countries to communities. The algorithmic assignment variability index (AAVI) is defined in Eq (3)). An AAVI value close to

unity (light colors) indicates more reliable assignments. Black arrows highlight the cases in which the country changes its community.

https://doi.org/10.1371/journal.pone.0264623.g003
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Algorithmic community assignment variability

The quantitative assessment of the inherent algorithmic robustness of community assignment

is based on the following method: Inspired by [25], in addition to detecting the partition with

the highest modularity, we analyzed the inner structure of partitions generated in a set of algo-

rithm calls. Such partitions can be qualitatively viewed as a series of “local maxima” in the

space of different network divisions. Therefore, these “local maxima” are also meaningful for

illustrating the existence of competing assignments. (See the analysis of local partition stability

in the S1 Appendix).

To measure the robustness of community assignment, one needs to introduce the distance

between two partitions and a quantitative measure that would allow the assessment of the vari-

ability of partitions originating from different algorithm calls. Several approaches for defining

such a distance have been proposed. These approaches can be roughly divided into three

groups: those based on counting pairs, set matching, and variation of information (see [34]).

In the problem under consideration, the structural properties of the community detection

results allow us to use the simplest and, therefore, easily tractable measures. The reason is that

communities are labeled after the country making the highest contribution to its value added.

Therefore, the change in community structure can be evaluated based on the affiliation of each

particular node to a particular label. A comparison of the results obtained using different defi-

nitions of distance is an interesting problem for further studies.

Each partition C can be presented as a vector of length N equal to the number of nodes in

the graph (the sum of the number of country-sector pairs and number of country-consumer

nodes), in which each element is the name of the community to which the node is assigned.

The distance between two partitions C and C0 can be quantified as the Hamming distance

DðC; C0Þ between the corresponding vectors and is equal to the number of nodes with different

community names in C and C0. The proximity pðC; C0Þ between the two partitions can be mea-

sured as the fraction of the nodes with the same assignment:

pðC; C0Þ ¼ 1 �
DðC; C0Þ

N
:

Table 1 illustrates this calculation for the case of a two-country and three-sector world

economy.

An algorithmic partition variability index (APVI), a quantitative measure of the algorithmic

assignment variability in terms of the diversity of the competing high-modularity partitions,

can be calculated for each graph Gt, t = 2000, . . ., 2014. To this end, we denote the set Ŝ of 90

partitions generated in a given set of algorithm calls by Ĉ ¼ fĈ ð1Þ; . . . ; Ĉ ðŜÞg. (To simplify nota-

tion, the time index was dropped). Assuming that C is the partition from Ĉ characterized by

the highest modularity value, the APVI can be defined as follows:

APVI ¼
P

i¼1;...;Ŝ;Ĉ ðiÞ 6¼CpðC; Ĉ
ðiÞÞ

Ŝ � 1
: ð2Þ

APVI (2) characterizes the inherent algorithmic partition variability. The closer the APVI is to

1, the more uniform the outcome of different algorithm calls are and, therefore, the more

robust the dominant partition.

The arguments leading to the definition of APVI can be used for a detailed analysis of

dynamic patterns. APVI can be decomposed into a set of similar indices for individual coun-

tries. For this purpose, the same Hamming distance for the assignment vectors corresponding

to sectors and consumer nodes of different countries can be calculated. For instance, in the
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economy in Table 1, the distances between the assignment vectors of both countries are equal

to 1, and the proximities are equal to 0.75.

Furthermore, let ĈðkÞ ¼ fĈ ð1ÞðkÞ; . . . ; Ĉ ðŜÞðkÞg be the set of country k’s sector community

assignments, and CðkÞ be country k’s sector assignments in the partition with the highest mod-

ularity. Then, a country k’s algorithmic assignment variability index (AAVI), which has been

used in color labeling in Fig 3, can be defined as follows:

AAVIðkÞ ¼
P

i¼1;...;Ŝ ;Ĉ ðiÞ 6¼CpðCðkÞ; Ĉ
ðiÞðkÞÞ

Ŝ � 1
: ð3Þ

Fig 4 shows the relative weights of communities, to which several countries were assigned

in different high-modularity partitions. For a given country and a given year, it shows the com-

munity to which it was finally assigned (shown in Fig 3) and the fraction of communities it

was assigned to in different algorithm calls.

The first six plots in Fig 4 illustrate the complex dynamics of the TUR, GRC, and ROU

community assignments. While Turkey’s assignment has been very stable, the reliability of

other countries’ assignments seems questionable. For example, the share of algorithm calls

assigning Bulgaria to the TUR community in 2002 and 2003 was the same. However, in 2002,

in the main partition, Bulgaria was assigned to the GRC community, and in 2003, to the TUR

community. The next four plots in Fig 4 illustrate the different cases of the transition dynam-

ics. Hungary illustrates the case of simple dynamics, as almost all algorithm calls assign it to

the DEU community. The last plot illustrates the simple transition dynamics, as almost all

algorithm calls for 2000–2012 assigned the Netherlands to the NLD community, and all algo-

rithm calls for 2013–2014 assigned it to the DEU community.

The dynamics of AAVI at the country level provide additional insights into the evolution of

communities. AAVI is often low when a country changes its community. This is quite natural

because the direction of trade of a country most likely changes slowly. During the transition

period, it may not be clear to what community a country belongs, as illustrated by the cases of

Poland and Slovakia in 2003.

In addition, a decrease in AAVI can be an indicator of the upcoming transition of a country

to a different community. Empirically, AAVI often starts to decrease several years before a

Table 1. Example of the calculation of the Hamming distance and proximity between to different partitions for the two-country the-sector world economy.

Country Sector Node id Assignment Contribution to distance

C CðiÞ

1 1 1 A A 0

2 2 A A 0

3 3 B A 1

final user 4 A A 0

2 1 5 B C 1

2 6 C C 0

3 7 C C 0

final user 8 C C 0

Hamming distance DðC; CðiÞÞ 2

Proximity pðC; CðiÞÞ 0.75

A, B, C are community names.

https://doi.org/10.1371/journal.pone.0264623.t001
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Fig 4. Fractions of algorithm calls due to the assignment of particular countries (an assignment of the majority of a given

country sectors). The tables near the y-axis contain information about the assigned community in the partition with the highest

modularity.

https://doi.org/10.1371/journal.pone.0264623.g004
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country changes its community. This can be seen in Poland. In 2000–2002, this country was

assigned to the RUS community, but the share of algorithm calls pointing to this assignment

has been decreasing. In 2003, Poland was assigned to the POL community, but the share of

algorithm calls assigned to the RUS community was also high. Similar dynamics were observed

for Slovakia. An exception can be illustrated by the case of the Netherlands’s transition from

the NLD to the DEU community in 2013.

Hence, AAVI can be seen as a measure of assignment robustness, with a lower value indi-

cating a lower reliability of country attribution to a particular community.

Communities ranking

Ranking of communities may help establish their relative importance for the global economy.

The value added created by each community is a natural metric for such a ranking. As the

WIOD contains the value added for every country-sector pair, the total value added by the

community is given by their aggregation. The first panel in Fig 5 shows the evolution of the

value added for the top seven communities. Of these, only the DEU and GBR communities

consist of more than one country. The shares of the global value added of the USA and JPN

communities have been decreasing, while the shares of the ROW and CHN communities have

been increasing. Significant growth in the DEU value-added share was observed only in 2013,

after the Netherlands and Belgium joined it.

In addition, other community rankings have been proposed. For example, the identified

communities, rather than countries, may be considered as the nodes of a network, which we

call the world input-output community network (WIOCN). Thus, we consider WIOCNs Pt ¼

ðN c
t ; E

c
t ;W

c
tÞ; t ¼ 2000; . . . ; 2014; where N c

t is the set of nodes representing communities, Ec
t

is the set of edges between at least one pair of nodes related to different corresponding com-

munities in Gt and elements wc
ij;t of the weight matrix Wc

t aggregate flows between communi-

ties and self-loops. A fragment of this network is shown in Fig 6.

The rankings can be based on various centralities, such as PageRank, and hubs and authori-

ties. However, we decided to drop the ROW community because it caused significant distor-

tions in the calculations. As seen from the plot in the first panel in Fig 5, the ROW community

has a significant value added share and, therefore, seems influential. However, the ROW nodes

aggregate information about many other country-sector pairs that are not present in the

WIOD. Therefore, instead of the influential ROW node, the correct graph should contain

many other “small” nodes, which is essential for the calculation of centralities such as PageR-

ank or hubs and authorities. The main principle of these algorithms is that the more influential

the node’s neighbors, the more influential the node. Therefore, cases where small and often

disconnected nodes are collected in one large node and cases where they remain disconnected

are fundamentally different. Therefore, to avoid distortions, it makes sense to disregard these

“small” nodes rather than introducing a large synthetic ROW node.

The PageRank algorithm was proposed in [35] to rank Internet pages and is naturally

defined for directed graphs. The main idea of the algorithm is described by the iterative proce-

dure at each step, in which pages give parts of their rank to the pages that they cite. The

WIONs Gt and, consequently WIOCNs Pt, are also directed graphs, and the PageRank algo-

rithm has been previously used to rank WION nodes ([14, 21, 26]). However, the notion of the

direction of “rank spreading” is not obvious. Each product flow is matched with a money flow

in the opposite direction. As shown in [26], the vector of PageRank centrality, calculated for

the direction of money flows, determines the equilibrium in static and dynamic multi-sector

models ([36–40]). However, at the aggregate level, where nodes are communities, this
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Fig 5. Ranking evolution of the top seven communities.

https://doi.org/10.1371/journal.pone.0264623.g005
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Fig 6. The fragment of world input output community network.

https://doi.org/10.1371/journal.pone.0264623.g006
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interpretation is not correct, and the PageRank scores calculated for product and money flows

should be treated as different node ranking methods.

To overcome this deficiency, we define the product PageRank and money PageRank algo-

rithms. While the former would calculate centralities with respect to product flows, the latter

would do so for money flows.

Let Nc
t ¼ jN

c
t j and xpi;t; xmi;t; i ¼ 1; . . . ;Nc

t be the product and money PageRank vectors

defined as follows:

xpi;t ¼ d
XN

c
t

j¼1

wc
ji;t

PNc
t

k¼1 wc
jk;t

xpj;t þ b; i ¼ 1; . . . ;Nc
t ; ð4Þ

xmi;t ¼ d
XN

c
t

j¼1

wc
ij;t

PNc
t

k¼1 wc
kj;t

xmj;t þ b; i ¼ 1; . . . ;Nc
t ; ð5Þ

where d and β are parameters. The typical choice of d is 0.85, and the choice of β depends on

normalization. In the results below, we normalize the values such that the vector elements sum

to one.

The calculations of the PageRank-type centralities are presented in the second row of the

plots in Fig 5. The left plot shows the dynamics of product PageRank. These dynamics can be

compared with the one presented in [21], which analyzed the product page ranks for countries.

The top six countries are broadly the same, but their dynamics and rankings differ signifi-

cantly. In our results, the USA remains by far the most important node for the whole period,

whereas in [21], China overtakes it in 2008 and 2009. In addition, for the DEU community,

the product PageRank has been growing, while in [21], it has been declining. The reasons for

the differences are that our WIOCN treats communities as nodes, includes final demand

flows, and excludes the ROW from the calculations.

The right plot in the second row of Fig 5 depicts the evolution of the money PageRank cen-

trality for the top seven communities. Their dynamics and rankings are very different from

those of product PageRank. For example, in 2013 and 2014, the CHN community became the

most important. Moreover, the inclusion of the Netherlands and Belgium in the DEU commu-

nity in 2013 strongly affected its relative money PageRank. In 2013 and 2014, the CHN, USA,

and DEU communities were ranked almost equally high. This differs from the ranking by

value added and product PageRank, where the USA community is substantially more impor-

tant than the CHN and DEU communities.

The difference between product PageRank and money PageRank is in the direction of rank

spreading. In the case of product PageRank, the rank spreads from the producer to the final

user, that is, if a highly ranked community sells a significant share of its value added to some

other community, the latter also has a relatively high rank. In the case of money PageRank, the

rank spreads from the final user to the producer. Namely, if some highly ranked community

pays significant amounts for imports from another community, then the latter gets a high rank

as well. Therefore, the product PageRank can be considered as reflecting the final user ranking

and the money PageRank with producer ranking.

This role separation between producers and final users is explicitly reflected in two special

centrality measures, the hubs & authorities centralities ([41]). In this algorithm, each node

plays the dual role of a producer and final user, and key producers are connected with key final

users, and vice versa. In the resulting ranking, key producers are called hubs, and key final

users are called authorities.
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The iterative procedure used to calculate these rankings is as follows: Let aðkÞi;t be node i’s
authority rank at the kth stage of the algorithm, hðkÞi;t be its hub rank, and að0Þi;t ¼ hð0Þi;t ¼ 1. Then,

the step of the kth algorithm is defined as follows:

hðkÞi;t ¼
XN

c
t

j¼1

wc
ija
ðk� 1Þ

j;t ; ð6Þ

aðkÞi;t ¼
XN

c
t

j¼1

wc
jih
ðkÞ
j;t : ð7Þ

In addition, after each algorithm’s step, the ranks are normalized so that both rank vectors

sum up to unity.

The resulting stationary distribution of the hubs & authorities rankings is shown in the last

row of the plots in Fig 5. These rankings clearly differ from those described above. First, the

USA community rank was much higher than the ranks of the other communities. In addition,

US trading partners, such as the CAN and MEX communities, are now included in the top

seven communities. For comparison, a recent study [42] also ranked countries in the WTN

using the hubs & authorities algorithm. In 1992—2012, four countries (China, Germany, the

USA, and Japan) were ranked close to the top in the hub ranking. Meanwhile, in the authority

ranking, the USA ranked much higher than the rest of the communities, similar to our results.

In the case of hub ranking, the reason for such differences is the existence of self-loops in the

WIOCN. In particular, due to the heavy self-looped USA community, the high authority rank

spreads to its hub rank, and then to the ranks of its geographical neighbors.

Conclusion

This study investigated community detection in WION. We showed that the results of the

Louvain community detection algorithm in WION strongly depend on the initial community

partition and its internal randomization. Moreover, the community structure that maximizes

modularity may not be the only reasonable community structure. To the best of our knowl-

edge, this is the first time this fact was considered in detail in a recent study [25] and was

neglected in the economic literature. Inspired by the results of [25], we propose several

improvements of the community detection algorithm in application to WION and introduce

APVI, which measures the difference between the community assignment with the highest

modularity and other community assignments that provide the local maxima of the modular-

ity function. We proceed by defining such an index on the country level, referred to as AAVI.

This index has a very natural interpretation: a high valus means that the assignment of a given

country to a given community is highly reliable and vice versa. A notable result of our study is

that the AAVI value often decreases several years before there is a change in the country’s com-

munity, thus making it a leading indicator of this event.

We also provide several new approaches for identifying key economic players. These

approaches are based on the application of several centrality measures to a synthetic network

in which nodes represent identified WION communities with the highest modularity. Along

with the share of the world value added, we calculated two variants of the PageRank and Hubs

and Authorities ranks for this network. By analyzing the evolution of these rankings, we identi-

fied a series of notable trends in global economic force distribution.
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